POL 571: Expectation and Functions of Random Variables

نویسنده

  • Kosuke Imai
چکیده

where F (x) is the distribution function of X. The expectation operator has inherits its properties from those of summation and integral. In particular, the following theorem shows that expectation preserves the inequality and is a linear operator. Theorem 1 (Expectation) Let X and Y be random variables with finite expectations. 1. If g(x) ≥ h(x) for all x ∈ R, then E[g(X)] ≥ E[h(X)]. 2. E(aX + bY + c) = aE(X) + bE(Y ) + c for any a, b, c ∈ R.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

متن کامل

Independent random variables

1 Last two lectures ¯ probability spaces ¯ probability measure ¯ random variables and stochastic processes ¯ distribution functions ¯ independence ¯ conditional probability ¯ memoriless property of geometric and exponential distributions ¯ expectation ¯ conditional expectation (double expectation) ¯ mean-square estimation 1

متن کامل

Green's Functions for Elliptic and Parabolic Equations with Random Coefficients Ii

This paper is concerned with linear parabolic partial diierential equations in divergence form and their discrete analogues. It is assumed that the coeecients of the equation are stationary random variables, random in both space and time. The Green's functions for the equations are then random variables. Regularity properties for expectation values of Green's functions are obtained. In particul...

متن کامل

POL 571: Convergence of Random Variables

So far we have learned about various random variables and their distributions. These concepts are, of course, all mathematical models rather than the real world itself. In practice, we do not know the true models of human behavior, and they may not even correspond to probability models. George Box once said that there is no true model, but there are useful models. Even if there is such a thing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006